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1. Introduction 

During the past decade the diagrammatic many-body perturbation theory 
(MBPT) [1-3] has been developed into a convenient and computationally 
tractable scheme [4-6] for the calculation of electron correlation energies which 
compares favourably with other methods currently in use [7-18]. Within the 
algebraic approximation [5] the MBPT approach provides a very efficient and 
highly systematic method for the study of the electron correlation problem in 
many-electron systems and offers certain advantages in comparison with more 
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standard treatments [7, 10, 15, 18]. Moreover, the interpretation of correlation 
effects by using the hole-particle formalism and Feynman diagrams [1-3, 18-20] 
is very instructive and appealing. 

Virtually the same approach can be employed for many-electron systems in the 
presence of some external perturbation [1]. This results [1, 21, 22] in the diagram- 
matic MBPT scheme for the interpretation and calculation of correlation contri- 
butions to the properties of many-electron systems, e.g. electric and magnetic 
moments and susceptibilities of atoms and molecules [23, 24]. However, in the 
case of externally perturbed systems the choice of the appropriate single-particle 
states becomes less obvious than for the unperturbed problem. One can use 
either the single-particle states determined from the Hartree-Fock (HF) treat- 
ment of the unperturbed system [1, 21, 25-31] or the perturbation-adapted 
single-particle states [21, 22, 31-36]. In the latter case, the HF problem must 
be solved for the perturbed system prior to the consideration of correlation 
effects. Both these cases have recently been given a detailed diagrammatic 
analysis [21, 31] which clearly indicates the preference of the MBPT treatment 
of the correlation effects for atomic and molecular properties based on the 
perturbed HF orbitals obtained from the coupled Hartree-Fock (CHF) [37-39] 
perturbation theory. 

The most convenient way of performing diagrammatic MBPT calculations of 
correlation corrections to properties is to use the so-called finite-field perturba- 
tion approach [40-42]. This technique has already been successfully utilized in 
several other studies of correlation contributions to atomic [43, 44] and molecular 
[45-49] properties and appears to be the most efficient computational method 
for the electric field perturbation. Within the diagrammatic MBPT approach, 
the finite-field perturbation scheme leads to the field-dependent correlation 
energy diagrams [50] whose differentiation with respect to the field strength 
gives directly the correlation corrections under consideration. Recent applica- 
tions of the finite-field diagrammatic MBPT [21, 22, 31-36] appear to be very 
promising and this method is also employed in the present calculations. 

The present paper is aimed at a systematic study of correlation contributions to 
the electric dipole polarizability of the fluoride ion. The negative ions are special 
in that the correlation contribution to their polarizabilities can be very large 
[51]. Recent preliminary MBPT calculations of the polarizability of the fluoride 
ion [33] have led to the conclusion that the corresponding second-order correla- 
tion correction is also exceptionally large. This obviously raises the question of 
the higher-order correlation contributions to the fluoride ion polarizability. In 
comparison with the second-order effects they should be smaller but not 
necessarily negligible. In this paper, the corresponding diagrammatic MBPT 
calculations are carried out through the third-order in the correlation perturba- 
tion, the scaling procedure is used and appropriate Pad6 approximants are 
constructed [52, 53, 67, 68, 70]. 

Accurate calculation of atomic and molecular polarizabilities imposes certain 
specific requirements with regard to the form and character of the basis set 
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[43, 45]. In the standard fixed-basis set approach one has to use a number of 
polarization and diffuse functions [43-45, 54, 55] and, when investigating the 
correlation effects, a given basis set must account for both the external field 
perturbation and the electron correlation [21, 22, 33-36]. Even for relatively 
small systems this may lead to basis sets of prohibitively large size. To overcome 
these problems it has been proposed [56] to use the Gaussian-type orbitals with 
explicit dependence on the electric field strength. These electric-field-variant 
(EFV) GTO bases [56, 57] have been found very efficient in the CHF calculations 
of atomic and molecular polarizabilities [56-61]. More recently they have been 
also successfully utilized for the calculation of correlation corrections to 
polarizabilities [21, 22, 32, 33, 62]. Several useful features of the EFV GTO 
bases make them certainly very appropriate for the present purposes. It should 
be pointed out that in the case of negatively charged species the basis set problem 
may become even more acute than for neutral systems [51, 63]. 

A brief survey of the theory and methods employed in the present study is given 
in the next section. The corresponding computational aspects and some numerical 
details are described in Sect. 3. Both the correlation energy data and the 
polarizability results are presented in Sect. 4. In Sect. 5 our results are discussed 
in the light of the disagreement between the theroretical and empirical polariza- 
bility values of the fluoride ion. It is concluded that the third-order MBPT results 
for the free fluoride ion polarizability are more realistic than most of the so-called 
empirical values. 

2. Theory and Methods 

2.1. Diagrammatic Many-Body Perturbation Theory 

A comprehensive description of the diagrammatic many-body formulation 
[19, 20] of the Rayleigh-Schr6dinger perturbation theory for electron correla- 
tion energies in molecules has been given in a number of recent papers [1- 
3, 5, 7, 10, 18, 64]. Therefore, it is sufficient to give only a brief explanation of 
the notation used throughout this paper which is basically the same as that 
employed elsewhere [5, 7, 65]. 

Let us first consider a many-electron system in the absence of external perturba- 
tions. The total Hamiltonian H is split into the zero-order operator H0 and the 
internal perturbation H1. The level shift AE with respect to the lowest eigenvalue 
E0 of the zero-order Hamiltonian H0 can be given the following perturbation 
expansion 

A E = E I + E 2 + E 3 + .  " " (1) 

where En is the nth order perturbed energy with respect to the perturbation H1 
[5, 7, 65]. All these perturbed energies can be given a diagrammatic representa- 
tion and it can be shown that only terms described by linked diagrams [19, 20] 
enter the perturbation series (1). 
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If Ho is taken to be the HF Hamiltonian, then Eo+E1 is the HF energy of a 
given system and the sum E e + E 3 + '  �9 ' is referred to as the total correlation 
energy E ..... On using the algebraic approximation [5], the sum of the corres- 
ponding zero- and first-order energies is the self-consistent field (SCF) energy, 
EscF, and the correlation energy is taken with respect to it. 

In practice we have only some truncated expansion for the total energy, E, and 
we try to obtain the best approximation to E by using a few terms, say 2N + 1, 
of the perturbation expansion 

E = Eo+ AE = E0 + E l  + E 2  + E 3  + "  " �9 �9 (2) 

The most natural is to consider the usual truncated Taylor series, i.e. the [2N + 
1/0] PadO approximant [66]. The full third-order calculations will give then the 
following approximate value of the correlation energy 

E . . . .  ~ E  .... [3/0] = E2+E3.  (3) 

Improved results can often be obtained [53, 67-69] by using the [N + 1/N] Pad6 
approximants based on the first 2N + 1 terms of the expansion (2). Within the 
third-order MBPT approach this leads to 

E . . . .  ~ E . . . .  [2/13 =/~-IE2 (4) 

where 

E3 
= 1 - E ~ '  (5) 

This result follows also from the scaling of the zero-order Hamiltonian [52, 53] 
and has recently been given a firm variational justification [70]. To stress the 
importance of the approximation (4) let us mention that the [ N +  1/N] Pad6 
approximant is invariant to the changes of scale and of the origin of the zero-order 
spectrum [52, 53, 67, 71, 72]. The approximation (4) is frequently referred to as 
the geometric approximation based on E2 and E3, for it has the form of a 
geometric series. However, this analogy has only a formal character, since the 
expansion terms of (4) do not correspond to the higher-order terms in the 
perturbation series (2) [53]. 

In the present paper the diagrammatic MBPT calculations are carried out through 
the third-order in //1. Both the diagrams and the corresponding algebraic 
formulae can be found elsewhere [5, 7, 65]. The third-order correlation energy 
E3 can be conveniently expressed as a sum of the particle-particle, hole-particle, 
and hole-hole contributions which are denoted by E3(pp), E3(hp), and E3(hh), 
respectively. Moreover, each term in the series (2) can be analysed according 
to the number of interacting bodies [7] and the k-body contribution to En will 
be denoted by E k. 

The knowledge of the first 2 N +  1 terms in the expansion (2) is equivalent to 
the knowledge of the Nth  order perturbed wave function which can be used to 
obtain a variational bound to the total energy. In the case of the third-order 
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MBPT calculations one has [65]: 

E ~< E(var,  y) = E0 + E1 + [(2 7 - y2)E2 + y2E3]/(1 + 72A11) (6) 

where Au is the norm of the first-order perturbed function and y is a variation 
parameter.  Hence, we obtain the following approximate formulae for the correla- 
tion energy 

E 2  "Jr- E 3  
E . . . .  ~--- E .... (var, 3, = 1) 

l+Aa: 

and 

(7) 

2 2 
(2 ] / o p t -  ]/opt ) E 2  -q- ] /optE3 (8)  

2 E . . . .  (va r ,  "]/opt) -- 1 + "]/opt A l l  

where "/opt is the value of ]/ calculated from the minimum of the variational 
energy (6) [65, 73, 74]. Both these formulae will be exploited in the present 
paper. 

Finally, let us mention that instead of using the HF zero-order  Hamiltonian H0 
which is hereafter  referred to as the model Hamiltonian [5, 7, 65], H0 = H m o d e l ,  

one can also employ a shifted zero-order  operator,  Ho = Hshifted[5, 7], which 
commutes with Hmodel- This procedure is equivalent to the use of shifted 
denominators when computing the perturbed energies [1, 5]. The shifted Hamil- 
tonian employed in the present paper is the same as that of Refs. [7] and [65]7 
where details can be found. This completes the survey of basic formulae which 
will be referred to in subsequent sections. 

2.2. Finite-Field M[BPT Treatment of External Perturbations. Correlation Correc- 
tions to Polarizabilities 

The perturbation treatment of the electron correlation effects in externally 
perturbed systems is somewhat ambiguous [22]. However,  it has recently been 
demonstrated [22, 31, 34] that the diagrammatic MBPT approach based on what 
is known as the coupled Har t ree-Fock  (CHF) solutions for the perturbed system 
[38, 39] represents the most appropriate method. Since the CHF perturbation 
solutions follow from the expansion of the HF results for the perturbed system, 
the most convenient way of performing the appropriate computations is by using 
the so-called finite-field scheme [40-42]. 

In the finite-field perturbation method the total energy of a given system is 
considered as a numerical function E = E(F) of the external field strength F. 
The kth order perturbed energies are obtained then via the numerical differenti- 
ation of E(F) with respect to F. Since according to Eq. (2) 

E(F) = Eo(F) + AE(F) = EHF(F) + E2(F) + E2(F) +" " ' ,  (9) 

where 

EHF(F) = Eo(F) + El(F) ,  (10) 
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one can define the nth order correlation correction to the kth order field- 
perturbed energy as 

E(k) 1 [OkEn(F)'~ 
" = - - ~ . \ - " ' ~ - ~ - ] F = O "  (11) 

In terms of numerical calculations this means that one needs to compute first 
the field-dependent correlation energy diagrams [32, 34, 50] by using the field- 
dependent single-particle states. Thus, all correlation energy formulae presented 
in the previous section remain formally the same, except for being explicitly 
dependent on the external perturbation (field) strength F. 

For the present paper the quantity of primary interest is the electric dipole 
polarizability [75] which is proportional to the second-order field-perturbed 
energy for the perturbation due to static homogeneous electric field. In the case 
of spherically sysmmetric systems the rotational average a of the polarizability 
tensor [75] is given by 

- [  o2E(F)'~ (12) 
a= \ OF 2 ]~=o' 

where F denotes the strength of the external electric field along some arbitrary 
direction. On substituting Eq. (9) into Eq. (12) we obtain the following perturba- 
tion expansion 

a = a H F +  a . . . .  = a H V q -  a 2  + Or3 + '  " " , (13) 

where the first term corresponds to what is known as the CHF result and an, 
n = 2, 3 . . . . .  denote the n-th order correlation corrections to the HF (CHF) 
value. 

The total correlation correction a .... can be approximated by using derivatives 
of different approximate formulae for the field-dependent correlation energy. 
From the second-order derivatives of the field-dependent counterparts of Eqs. 
(3), (4), (7), and (8) we obtain the estimates of the correlation contribution to 
the polarizability Otcorr[3/0], acorr[2/1], ot . . . .  (var, 3' = 1), and a . . . .  (var, ") /opt) ,  

respectively. 

Though the diagrammatic analysis of correlation corrections a ,  [21, 22, 31, 
32, 34] reveals certain important features of the CHF-based MBPT approach, 
the appropriate calculations are most easily carried out by using a completely 
numerical scheme which consists in computing the field-dependent HF (SCF) 
orbitals and the field-dependent correlation energy diagrams. Then, the latter 
are differentiated numerically to give the contributions to a,. 

To complete the definitions employed in this paper let us also mention that the 
third-order term oL 3 can be represented, similarly to E3, as a sum of the particle- 
particle, hole-particle, and hole-hole components which are denoted by a3(pp), 
a3(hp), and a3(hh), respectively. Moreover, each term in Eq. (13) can be analysed 
into k-body interaction contributions a ~ in the same way as in the case of En 
[7]. Also using either Hmode~ o r  nshifted as the zero-order Hamiltonians for the 
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field-perturbed problem, Ho(F), will lead to different correlation corrections in 
Eq. (13). 

All calculations are obviously carried out by using the algebraic approximation 
[5], so that in final formulae all HF values should be replaced by their SCF 
counterparts. Accurate calculation of both SCF polarizabilities and correlation 
corrections to them imposes, however, rather specific requirements with regard 
to the flexibility of the finite basis set and this problem deserves a separate 
discussion. 

2.3. The Basis Set Problem in Polarizability Calculations. The EFV GTO Bases 

As already mentioned the calculation of polarizabilities including the correlation 
effects requires that a given finite basis set must simultaneously give a proper 
description of the electron density polarization due to external electric field and 
considerable portion of the correlation energy [22]. To satisfy both these condi- 
tions one has to employ basis sets which contain several polarization and diffuse 
functions [34, 35, 43-45, 54, 55]. An alternative solution of the basis set problem 
consists in using smaller bases of functions which can be inherently adapted to 
the electric field perturbation. This is the main idea behind the concept of the 
EFV bases [56, 57]. 

According to the EFV basis set approach a given initial set which has been 
employed in calculations for the unperturbed system is made explicitly dependent 
on the electric field strength. Each function gi(r; ai) of the inital set, where r is 
the electron coordinate vector and ~i denotes the orbital exponent, is transformed 
into a field-dependent function x~(r; a~, F). In the case of the GTO bases a 
natural form of the field dependence of GTO's can be guessed from the solutions 
for the field-perturbed harmonic oscillator [56]. The corresponding analysis has 
led to the following form of the EFV GTO basis functions [56] 

xe(r; ~,  F)  = xi(r(F, al, A); o~), (14) 

where 

AF 
r(F, ai, A) = r - - - ~  (15) 

O/i 

and A is a parameter which is chosen the same for all GTO's. Its value can be 
determined variationally by the minimization of the second-order perturbed SCF 
energy [56-61]. 

The efficiency of the EFV GTO bases has already been illustrated in a number 
of atomic and molecular polarizability calculations at the CHF level [56-61]. 
The corresponding results which have been obtained by using rather standard 
and relatively small bases [58, 60, 61 ] compare favourably with the most accurate 
CHF polarizabilities computed within the fixed, i.e. field-independent, basis set 
approximation [45]. More recently the EFV GTO bases have also been success- 
fully employed for the calculation of correlation corrections to polarizabilities 
[21, 22, 32, 33, 62]. It is of particular importance that when using the EFV GTO's 
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for the study of correlation effects one can select the initial GTO/CGTO basis 
set primarily according to the correlation energy criteria [22]. The effects of the 
electric field perturbation are automatically accounted for by the analytic depen- 
dence of the basis set functions on the field strength [22, 32, 33, 62] without any 
increase in the basis set size. It is also convenient that the dependence of the 
basis set functions on F amounts to a shift of the orbital origin for each primitive 
Gaussian. This feature of the EFV GTO bases enables all calculations to be 
easily performed by using standard computational schemes and programs. The 
variation parameter A can also be efficiently evaluated by a completely numerical 
method [61, 76]. Its numerical value which follows from the optimization of the 
CHF polarizability has been found [22, 32, 33, 62] quite suitable for calculating 
the field-dependent correlation energies. 

The usefulness of the EFV GTO bases should also be stressed in the context of 
recent studies of correlation energies using universal even-tempered basis sets 
and systematic sequences of even-tempered basis sets [16, 69, 77-81]. Employing 
EFV GTO bases in such an approach certainly requires some additional computa- 
tional effort because of the optimization of the parameter A. However, this 
method provides a tractable scheme for accurate studies of electric properties 
of many-electron systems within the restricted basis set approximation. 

3. Computational Details 

3.1. Basis Sets 

The initial GTO/CGTO basis sets employed in the present diagrammatic MBPT 
studies of the fluoride ion polarizability are the same as those used previously 
[33]. They form a sequence of three bases of increasing size and complexity. 
The smallest basis A has been taken from the paper by Kistenmacher et al. [82] 
and consists of 13s, 8p, and ld primitive GTO's contracted to 7s, 4p, and ld 
CGTO. 

The SCF energy for this basis set appears to be fairly close to the HF limit for 
the fluoride ion [82]. However, because of the lacks of GTO's with relatively 
small orbital exponents the representation of the outer region of the electron 
density distribution should be rather inaccurate. The second set, basis B, has 
been generated in order to improve the quality of SCF orbitals in the outer 
atomic region and this has been effected by the addition of s and p GTO's with 
orbital exponents equal to 0.035 and 0.032, respectively [33]. These values have 
been selected by assuming that the orbital exponents of a given subset form 
approximately a geometric series. The CGTO set B used in the present calcula- 
tions corresponds to the contraction scheme (14.9.1/8.5.1). The valence shell 
orbitals are left virtually uncontracted. 

In order to recover a considerable portion of the correlation energy one needs 
a number of higher angular momentum functions be included in the basis set. 
For this reason the largest set C has been generated from the set B by the 
addition of a single set of d-type GTO's with the orbital exponent equal to 0.6 
[33]. This set corresponds to the following contraction scheme (14.9.2/8.5.2). 
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In the presence of the external electric field the initial GTO/CGTO basis sets 
are transformed into the corresponding EFV GTO bases according to Eq. (14). 
The variation parameter h has been optimized in the CHF calculations of the 
electric dipole polarizability of the fluoride ion [33] and is equal to 0.1158, 
0.1080, and 0.1129 for basis sets A, B, and C, respectively. The h-optimization 
of the EFV GTO bases has been carried out by using the numerical scheme 
described previously [61, 76]. 

3.2. Calculations of Correlation Energies and Polarizabilities 

The diagrammatic MBPT calculations of the second- and third-order correlation 
energy for bases A, B, and C have been performed by using the methods 
described in previous papers [5-8]. The results of the corresponding field- 
independent basis set calculations are reported in the next section. 

More detailed information appears to be appropriate in the case of the polariza- 
bility calculations. They have been carried out for both the field-independent 
and the EFV GTO bases A, B, and C. In the first step the corresponding s c F  
orbitals have been determined by using the SCF HF scheme with the external 
electric field included in the Hamiltonian. When using the finite-field perturbation 
methods a particular care has to be taken of the appropriate choice of the 
numerical values of the electric field strength [40-42, 60, 61, 76]. They must be 
large enough to produce meaningful changes of the total energy of a given system 
and simultaneously they must be small enough to allow for a simple numerical 
determination of the field-dependent energy derivatives [60, 61, 76]. According 
to the previous CHF studies of the fluoride ion polarizability [33] and a series 
of numerical experiments which have been carried out within the present paper, 
the electric field strength of 0.005 a.u. appears to satisfy the above-mentioned 
requirements. 

The SCF orbitals calculated with F = 0.005 a.u. have been then employed for 
the evaluation of the field-dependent diagrammatic contributions to the second- 
and third-order correlation energy. Both the SCF (CHF) polarizability and the 
corresponding correlation corrections have been computed numerically from the 
energy values for F = 0 a.u. and F = 0.005 a.u. It follows from our calculations 
for other values of the external field strength that the results reported in this 
paper are accurate to 10 -2 a.u. of polarizability. This accuracy is completely 
sufficient for a meaningful discussion of different components of correlation 
contributions to the fluoride ion polarizability and different approximations for 
the total correlation correction a . . . . .  

4. Results 

4.1. Correlation Energy Studies 

The SCF energies and the diagrammatic MBPT contributions to the correlation 
energy of the unperturbed fluoride ion obtained with bases A, B, and C are 
renorted in Tables 1 and 2. Both the model expansion (H0 = nmodel) and the 
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Table 1. Calculated energy data for the unperturbed fluoride ion in three 
different GTO/CGTO bases (in a.u.) 

Basis A Basis B Basis C 

-99.45844 -99.45861 EscF -99.45824 

Correlation energy: model expansion 

E2 -0.26394 -0.26481 -0.29112 
Es(pp) +0.03942 + 0 . 0 3 9 5 6  +0.04508 
E3(hp) -0.07141 -0.07155 -0.08399 
Es(hh) +0.04463 + 0 . 0 4 5 1 9  +0.05090 

E3 +0.01264 + 0 . 0 1 3 2 2  +0.01199 
Ecorr[3/0] -0.25130 -0.25158 -0.27913 
Ecorr[2/1] -0.25188 -0.25222 -0.27961 
Ecorr(var, y = 1) -0.23840 -0.23849 -0.26284 
Eeorr(Var, ]/opt) -0.24056 -0.24077 -0.26522 
Yopt 0.91139 0.90922 0.91103 

Correlation energy: shifted expansion 

E2 -0.31684 -0.31420 -0.34655 
E3(pp) +0.02294 + 0 . 0 4 4 5  +0.02925 
E3(hp) +0.05937 + 0 . 0 5 2 3 1  +0.05266 
E3(hh) +0.00391 + 0 . 0 0 3 7 9  +0.00431 

E3 +0.08622 + 0 . 0 8 0 5 6  +0.08622 
Ecorr[3/0] -0.23063 -0.23364 -0.26033 
Ecorr[2/1] -0.24907 -0.25008 -0.27751 
Ecorr(var, 3'=1) -0.21280 -0.21618 -0.23850 
Er ]/opt) -0.23736 -0.23845 -0.26289 
]/opt 0.74913 0.75890 0.75859 

shifted expansion (H0 = nshifted) [5,  7, 8] are examined as a function of the order 
of the correlation perturbation (Table 1) and as a function of the number of 
interacting bodies (Table 2). Table 1 also gives various estimates of the total 
correlation energy which follow from the third-order MBPT treatment. 

For all three bases utilized in the present paper the SCF energies are nearly the 
same and fairly close to the estimated HF limit ( -99 .4594 a.u. [82]). Passing 
from the set A to the set B has practically no effect on the calculated correlation 
energy components. However, a considerable decrease of the E2 value is observed 
for the basis C. This value can be compared with the recent highly accurate 
second-order correlation energy computed by Jankowski et al. [83]. Their calcu- 
lated result for E2 for the fluoride ion amounts to -0 .3995  a.u. while the 
extrapolated value is -0 .4004  a.u.. Obviously, one can hardly compete with the 
accuracy of the second-order perturbation calculations of Jankowski et al. when 
using finite and rather small G T O / C G T O  bases. However, the accurate value 
of E2 is very close to the empirical estimate of the total correlation energy of 
the fluoride ion ( -0 .393 a.u. [84]). Within the model expansion the present 
calculations with the largest basis C give more than 70% of the accurate 
second-order energy. This is a rather typical result for basis sets of that size. 
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Table 2. N-body interaction components of the calculated correlation energy for the unperturbed 
fluoride ion in three different GTO/CGTO basis sets. The superscripts at the energy symbols denote 
the number of interacting bodies; the subscripts refer to the order of perturbation expansion. All 
entries in a.u. 

Basis 

Ho 

A B C 

Hmodel Hshifted /-/model Hshifted Hmodel Hshifted 

Two-body contributions 

E~ -0.26394 -0.31684 -0.26481 -0.31420 -0.29112 -0.34655 
E~(pp) +0.03942 +0.02294 +0.03956 +0.02445 +0.04508 +0.02925 
E32(hp) -0.12875 -0.03106 -0.12958 -0.03547 -0.14554 -0.04048 
E~(hh) +0.04193 0 0 +0.04248 0.0 +0.04782 0.0 
Total -0.31134 -0.32496 -0.31232 -0.32522 -0.34376 -0.35778 

Three-body contributions 

E3(hp) +0.05734 +0.09043 +0.05803 +0.08778 +0.06154 +0.09314 
E3(hh) +0.00006 +0.00007 +0.00006 +0.00007 +0.00006 +0.00007 
Total +0.05741 +0.09050 +0.05809 +0.08785 +0.06161 +0.09321 

Four-body contribution 

E4(hh) +0.00263 +0.00384 +0.00264 +0.00372 +0.00302 +0.00424 

Both the model and the shifted expansion display a fairly regular behavior for 
all basis sets used in the present  calculations. Similar regularities have been 
observed in other cases [5, 7, 8, 16]. For both choices of the zero-order  Hamil-  
tonian the third-order correlation energy is positive and considerably smaller 
than the absolute value of E2. However,  the use of Hmodel appears  to give a 
bet ter  convergence. 

According to the third-order MBPT data of Table 2 the contribution of the 
two-body interaction terms to the correlation energy is certainly dominant.  Also 
the convergence with the number  of interacting bodies appears  to be quite rapid, 
though this result must be considered with some caution, since it refers to the 
MBPT results through the third order only. Nonetheless, a more  rapid conver- 
gence is once again observed for the model  expansion. 

Among  the estimates of the total correlation energy which are presented in 
Table 1 the [2/1] Pad6 approximant  leads to the most negative value for both 
choices of the zero-order  Hamiltonian.  For the model  expansion the usual Taylor 
series result and the [2/1] Pad4 approximant  to the correlation energy are within 
less than 10 -3 a.u.. The corresponding difference is much larger for the shifted 
expansion. This result implies also that the [2/1] Pad6 approximant  should 
represent  a bet ter  functional form for the correlation energy than the [3/0] 
approximant  [65]. 

It should be pointed out that the [2/1] Pad6 approximant  is equivalent to the 
result of the scaling procedure based on the vanishing of the third-order 
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correlation energy for the scaled expansion [52, 53, 67, 71, 72]. Since the same 
result is also obtained from the second-order energy variation principle [70] in 
a modified perturbation scheme [85,86], the study of the [2/1] Pad6 
approximants deserves a particular attention. Use of the [2/1] Pad6 approximants 
can be justified using variational arguments [70]. This variational origin of the 
[2/1] Pad6 approximant is accompanied by its invariance with respect to the 
scaling of the zero-order Hamiltonian and the shift of the reference eigenvalue 
spectrum [52]. 

It should be also pointed out that for the two perturbation expansions illustrated 
by the data of Table 1, the E .... [2/1] values are almost the same, while the 
usual Taylor series gives significantly different results. Above all this indicates 
some preference of the model expansion in the perturbation treatment of correla- 
tion effects. Because of its invariance properties and its variational justification, 
the [2/1] Pad6 approximant is expected to form a useful third-order approxima- 
tion when Hmoael is chosen as the zero-order Hamiltonian. The denominator 
shifts which are involved in the shifted perturbation expansion, though they 
result in a significant lowering of E2, may not be properly balanced. 

Considerable attention has recently been given to the possibility of transferring 
the scaling factor ~ of Eq. (4) between the correlation energy calculations in 
different bases [67, 53, 87, 88]. According to the present data for the model 
expansion the scaling factor/x appears to be fairly independent of the basis set. 
From the numerical values of E2 and E3 reported in Table 1 we obtain /z = 
1.04789, 1.04987, and 1.04119 for the basis sets A, B, and C, respectively. 
Much larger and less stable values of/x follow from the results for the shifted 
expansion. 

Finally, let us comment on the variation estimates of the correlation energy 
based on the third-order MBPT results. In comparison with E .... [3/0] and E .... 
[2/1] they are systematically less negative owing to the positive contribution of 
the renormalization term [12, 18, 89]. Since the renormalization contributions 
are cancelled by the higher-order diagrams the variational estimates should be 
in fact corrected for this effect [12]. This would lead again to the lowering of 
their numerical values. Moreover, it should be pointed out that for the model 
expansion the optimized value of the variational parameter 3' is closer to unity 
than for the shifted expansion. 

According to the present discussion it appears that the [2/1] Pad6 approximant 
based on the E2 and E3 values which follow from the model perturbation 
expansion provides the most reliable estimate of the total correlation energy. 
For the basis set C our value of E .... [2/1] gives about 70% of the empirical 
estimate of the correlation energy for the flouride ion [84]. A comparison with 
similar data for other systems [5, 7, 8, 18, 34, 64-68] leads to the conclusion that 
a major part of this discrepancy should be rather due to the restricted basis set 
approximation than the higher-order effects. Moreover, let us also mention that 
recent fourth-order MBPT calculations indicate a possibility of some cancellation 
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of the third- and fourth-order correlation energy contributions to polarizabilities 
[34]. However, it should be noted that these calculations neglected the fourth- 
order triple-excitation component of the energy which has been shown to be 
quite large [90-95]. In some cases the second-order value E2 may provide a 
very good approximation to the total correlation energy [96-98]. 

4.2. Dipole Polarizability of the Fluoride Ion 

The field-dependent energy values follow in general the results discussed for 
the field-independent case and several subtle differences are revealed only when 
considering the appropriate energy derivatives. The results of the polarizability 
calculations with initial field-independent G T O / C G T O  basis sets are shown in 
Table 3. Even for the largest basis set C the standard fixed basis set approach 
gives only a little more than 50% of the accurate CHF value reported by Cohen 
(1.56 ~3 = 10.53 a.u. [99]). For this reason the field-independent basis set results 
of Table 3 will not be given a detailed discussion. However, certain features of 
these data need to be commented upon. 

The first observation is that the shifted expansion leads to completely absurd 
values of correlation corrections to polarizability. The third-order correction 

Table 3. Results of the fluoride ion polarizability calculations in three 
different field-independent GTO/CGTO bases (in a.u.) 

Basis A Basis B Basis C 

3.25 4.65 6.05 ~SCF 

Correlation corrections: model expansion 

a2 +0.79 +2.91 +2.74 
a3(pp) -0.29 -0.82 -0.78 
a3(hp) +0.45 +1.04 +0.97 
a3(hh) -0.47 -2.00 -1.94 

a3 -0.31 -1.78 -1.76 
a~o~r[3/O] 0.48 1.13 0.98 
ar 0.51 1.29 1.12 
o~o~r(var, 3'= I) 0.31 0.43 0.24 
ar 3"opt) 0.38 0.81 0.62 

Correlation corrections: shifted expansion 

a2 +47.24 +8.75 +12.19 
a3(pp) +0.92 +1.34 +2.03 
a3(hp) -115.83 -15.69 -23.98 
a3(hh) +1.94 +0.14 +0.27 

a3 -103.97 -14.21 -21.68 
acorr[3/0] --56.73 --5.46 --9.49 
ar --19.73 --0.62 --2.19 
acorr(var, 3 '= 1) -65.37 -7.27 -12.03 
a~orr(var, 3'opt) -21.75 -1.40 -3.14 
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turns out to be much larger than a2 and this makes the use of the perturbation 
approach based on Hshiftea rather questionable. Moreover,  the sum of contribu- 
tions through the third order, i.e. O~SCF + a .... [3/0], which should give an estimate 
of the total polarizability, is negative for all basis sets. This result rules out the 
use of the CHF-based MBPT scheme which employs the shifted zero-order  
Hamiltonian. This also indicates that a partial summation of certain diagrams 
via the denominator shifts may be a dangerous procedure, for it may not be 
properly balanced. Even worse performance of the shifted expansion is observed 
in the case of the EVF GTO calculations and for this reason the corresponding 
data will not be presented and discussed. 

In contrast to the shifted expansion results, the data obtained for Hmode~(F), 
though they suffer from the basis set incompleteness, appear to be reasonable. 
On comparing the correlation corrections calculated for bases B and C one can 
expect that their values will mostly depend on the quality of the wave function 
with regard to its ability to give a proper  description of the electric field 
perturbation effects. Moreover,  independently of the basis set choice, the correla- 
tion corrections and their components display a fairly regular behaviour. The 
second-order correction is dominant and positive, though the contribution of a3 
is not negligible as well. The estimates of the total correlation correction to the 
SCF polarizability are systematically positive. However,  the corrections which 
are obtained from variational approximations for the field-dependent energy 
are much smaller than a . . . .  [3/0] and a . . . .  [2/1]. 

The calculations with EFV GTO bases which are reported in Table 4 are 
qualitatively similar to the data obtained for field-independent bases and the 
model expansion. For the SCF polarizability values calculated by using the 
A-optimized EFV GTO basis sets [33], the results obtained for bases B and C 
are certainly close to the expected HF limit and seem to be even slightly better 
than Cohen's CHF value (10.53 a.u. [99]). It is appropriate to mention that 
recent calculations using a very large and properly selected G T O / C G T O  set 
[100] have led to the CHF polarizability of 10.67 a.u.. 

On comparing the SCF data of Table 4 for different bases one can also observe 
the role played by the basis functions with relatively small values of orbital 
exponents. The importance of a proper  description of the outer region of the 
electron density distribution in the context of the EFV G TO  approach has 
already been indicated in previous calculations [56, 57, 101]. In the present case 
extending the set A by diffuse s and p functions is sufficient for the appropriate 
description of the electric field polarization effects within the EFV G TO  approach 
at the SCF level. The correlation-oriented extension of the set B has only a 
little effect on aSCF- 

The correlation corrections given in Table 4 are much larger than those computed 
with field-independent bases. However,  the contribution due to a2 is again 
dominant. Different components of the third-order correction a3 seem to be 
equally important for all three EFV GTO bases. Their  sum results in a rather 
large negative value of the third-order correction, indicating that the correlation 
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Table 4. Results of the fluoride ion polarizability calculations in three 
different EFV GTO bases (in a.u.) a 

Basis A Basis B Basis C 

ascF 9.23 10.57 10.62 

Correlation contributions: model expansion 

a2 +3.35 +6.27 b +5.92 
Ota(pp) --1.10 --1.85 --1.78 
a3(hp) +1.46 +2.31 +2.15 
a3(hh) -1.94 -4.37 -4.35 

aa -1.58 -3.91 -3.98 
acorr[3/0] 1.77 2.36 1.94 
ar 1.191 2.71 2.24 
aco~(var, 3'= 1) 1.07 0.86 0.30 
ar ",'opt) 1.41 1.70 1.16 

a All data correspond to the EFV GTO bases optimized with respect 
to the SCF polarizability value. The optimized scale factors h taken 
from previous calculations [33]. 
b On repeating the calculations of the field-dependent EFV GTO 
second-order energy an error has been found for previously reported 
[33] value of t~2. 

p e r t u r b a t i o n  ser ies  for  po la r izab i l i t i es  does  not  converge  as r ap id ly  as the  cor res -  
p o n d i n g  ser ies  for  the  to ta l  energy.  This  impl ies  tha t  the  h i g h e r - o r d e r  co r re l a t ion  
con t r ibu t ions  to po la r izab i l i t i es  can be  qu i te  i m p o r t a n t  [34]. 

A s  r ega rds  the  qual i ty  of the  ca lcu la ted  cor re la t ion  cor rec t ions ,  the  resul ts  
o b t a i n e d  for  the  basis  set  C are  supposed ly  the  mos t  accura te  ones.  This  basis  
set  gives p r e s u m a b l y  the  bes t  E F V  G T O  C H F  value  of the  f luor ide  ion po la r i za -  
bi l i ty  and  at  the  s ame  t ime  leads  to the  bes t  es t imates  of the  to ta l  co r re la t ion  
energy.  H o w e v e r ,  the  set  B does  no t  s eem to be  much  infe r ior  in this respect .  

O n  pass ing  to  the  es t ima tes  of  the  to ta l  co r re la t ion  cor rec t ion  to aSCF one  should  
t a k e  into account  the  p rev ious ly  m e n t i o n e d  slow convergence  of  the  co r re la t ion  
p e r t u r b a t i o n  series.  T h e  p rev ious  e s t ima te  [33] of  the  to ta l  po la r i zab i l i t y  o b t a i n e d  
f rom the  s e c o n d - o r d e r  co r re la t ion  co r rec t ion  and  the  SCF  (CHF)  value ,  

a ~"~" 01~ S C F  "4- O~2, (16) 

m a y  r e p r e s e n t  a fa i r ly  accura te  app rox ima t ion .  The  c o r r e spond ing  resul t  for  the  
basis  set  C a m o u n t s  to 16.52 a.u. and  is much  la rger  than  the u n c o r r e l a t e d  value.  
The  T a y l o r  ser ies  and  the  [2 /1 ]  Pad6  a p p r o x i m a n t  give the  fo l lowing es t ima tes  
(basis C)  of  the  to ta l  po la r izab i l i ty :  

a ~- a [ 3 / 0 ]  = a s c v  + acorr[3/0] = 12.56 a.u.,  (17) 

and  

a - a [ 2 / 1 ]  = a s c v + a  . . . .  [ 2 /1 ]  = 12.86 a.u.. (18) 
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R a t h e r  low values  of the  to ta l  po la r i zab i l i ty  which fol low f rom the  va r ia t iona l  
es t imates  of the  co r re la t ion  co r rec t ion  indica te  tha t  t he re  is a cons ide rab le  
con t r i bu t ion  due  to r eno rma l i za t i on  effects. Thus,  the  va r ia t ion  resul ts  ca lcu la ted  
by  using the  l imi ted  conf igu ra t ion - in t e rac t ion  (CI) m e t h o d s  mus t  be  cer ta in ly  

co r r ec t ed  for  the  e r r o n e o u s  t r e a t m e n t  of un l inked  clusters  [12, 102, 103 ,104 ] .  
This  is mos t  p r o b a b l y  the  reason  for  subs tan t ia l ly  lower  po la r i zab i l i ty  va lues  
o b t a i n e d  by  W e r n e r  and M e y e r  [45] wi th in  the  P N O - C I  scheme in compar i son  
with  the i r  C E P A  results .  The  la t te r  m e t h o d  is k n o w n  to have  a p r o p e r  d e p e n d e n c e  
on  the n u m b e r  of par t ic les  [ 1 8 , 1 0 5 , 1 0 6 ] .  In this con tex t  it is in te res t ing  to 
m e n t i o n  tha t  the  s e c o n d - o r d e r  co r re la t ion  co r r ec t ed  po la r i zab i l i ty  values  a re  
very  close to the  C E P A  values  ca lcu la t ed  for  the  same  basis  set  [36]. Hence ,  
one  can expec t  tha t  the  final po la r i zab i l i ty  va lue  should  be  closer  to the  e s t ima te  
given by  Eq.  (16) than  to the  resul ts  of Eqs.  (17) and  (18). None the les s ,  the  
t h i r d - o r d e r  d i a g r a m m a t i c  M B P T  ca lcula t ions  p red ic t  cons is ten t ly  a much  h igher  
va lue  of a than  tha t  which fol lows f rom the  C H F  calcula t ions .  

In  T a b l e  5 the  co r re l a t ion  cor rec t ions  o b t a i n e d  by  using the  m o d e l  expans ion  
and  bo th  the  f i e l d - i n d e p e n d e n t  and  the  E F V  G T O  bases  a re  ana lysed  in t e rms  
of  the  N - b o d y  in te rac t ion  cont r ibu t ions .  In all cases the  qua l i ta t ive  s t ruc ture  of 
these  da t a  is ve ry  similar .  Of  no te  is a ve ry  la rge  con t r ibu t ion  of  the  t h r e e - b o d y  
in te rac t ion  componen t .  Hence ,  the  convergence  of the  po la r i zab i l i ty  expans ion  

in t e rms  of the  n u m b e r  of in te rac t ing  bod ies  is also expec t ed  to be  r a the r  slow. 

Table 5. Components of correlation corrections to the polarizability of the fluoride ion arising from 
the N-body interaction terms in the correlation energy. Results of calculations with field-independent 
GTO/CGTO and EFV GTO bases. All data refer to the HF model Hamiltonian. All entries in a.u. a 

Basis A Basis B Basis C 

GTO/CGTO EFV GTO GTO/CGTO EFV GTO GTO/CGTO EFV GTO 

Contribution from two-body terms in correlation energy 
2 c~2 +0.79 +3.35 +2.91 +6.27 +2.74 +5.92 

aa2(pp) -0.29 -1.10 -0.82 -1.85 -0.78 -1.78 
cr~(hp) +1.11 +4.08 +3.60 +7.73 +3.49 +7.63 
a](hh) -0.48 -1.90 -1.98 -4.28 -1.92 -4.27 
Total +1.13 +4.43 +3.71 +7.87 +3.53 +7.50 

Contribution from three-body terms in correlation energy 

a33(hp) -0.66 -2.62 -2.56 -5.42 -2.52 -5.48 
a~(hh) +0.03 +0.03 +0.04 +0.03 +0.03 +0.03 
Total -0.63 -2.60 -2.52 -5.39 -2.49 -5.45 

Contribution from the four-body term in the correlation energy 

c~34(hh) -0.03 -0.07 -0.06 -0.11 -0.06 -0.11 

a Superscripts refer to the number of interacting bodies in the corresponding energy term; subscripts 
denote the order with respect to the correlation perturbation. 
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A number of different CHF calculations of the dipole polarizability of the fluoride 
ion has already been reported [33, 99, 100, 107, 108] and all these data have 
recently been reviewed by Coker [101, 110] in order to solve the disagreement 
between the empirical estimates and the available theoretical values. Calculations 
including the correlation effects are scarce. In 1963, Donath [111] has performed 
a sum-over-states calculation using the CI functions for excited states of appropri- 
ate symmetry. His final result amounts to 1.206 A. 3 = 8.14 a.u. and is lower than 
the expected HF limit. However, the quality of Donath's value is quite uncertain, 
for his correlation correction involves both the self-consistency and the true 
correlation contribution [21, 22]. Also the sum-over-states method may not be 
appropriate for computing the correlation corrections to polarizabilities as indi- 
cated by our MBPT data for the shifted expansion. It can be seen from the data 
of Table 3 that the correlation corrections which result from the shifted expansion 
are also negative. 

Recently a series of similar perturbation calculations for the fluoride ion polariza- 
bility has been carried out by using large field-independent GTO/CGTO bases 
involving a number of d functions [100]. The corresponding results are very 
similar to the present ones and confirm our conclusions with regard to the 
accuracy of the correlation corrections reported in this paper. They also indicate 
a very high efficiency of the EFV GTO bases in both the SCF (CH.F) and the 
finite-field MBPT calculations of polarizabilities. 

5. Empirical and Theoretical Estimates of the Free Fluoride Ion 
Polarizability. Discussion and Conclusions 

Most of the theoretical and computational aspects of the present polarizability 
calculations have already been discussed in previous sections. To summarize our 
conclusions we point out that the second-order correlation, Eq. (16), may be 
quite accurate [36]. On the other hand the estimate obtained by using the [2/1] 
Pad6 approximant to the field-dependent energy also deserves some attention, 
for it can be given a variational justification [70] in addition to its invariance 
properties. 

However, according to recent perturbation calculations of molecular 
polarizabilities [36] one can expect that the true value of the fluoride ion 
polarizability should be higher than that given by Eq. (18). Hence, the theoretical 
estimates of a can be rather safely placed in the range between ca. 13 and 16 a.u.. 

The accurate value of the free fluoride ion polarizability, though it represents a 
measurable quantity, has not been yet determined. Some empirical estimates 
can be obtained indirectly from the polarizability data for ionic crystals [112-115] 
or from the solution polarizabilities of salts [114]. The corresponding methods 
and results have recently been reviewed and discussed by Coker [109, 110]. One 
of the best known and commonly accepted values of the empirical polarizability 
of the free fluoride ion is due to Fajans and his coworkers [116] and amounts 
to 0.95/~3 = 6.4 a.u.. This value follows from the study of molar refractions of 
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salts at infinite dilution and is quite unexpectedly lower than the accurate CHF 
result. In principle this discrepancy could have been attributed to the neglect of 
correlation effects in the CHF scheme [21, 38, 39]. However, the analysis of the 
pertinent data for the isoelectronic Ne atom shows that the correlation effects 
should rather increase the polarizability value [33]. 

Recently a new set of empirical free ion polarizabilities has been proposed by 
Coker [109, 110]. It follows from Coker's analysis of the solution data that the 
free fluoride ion polarizability should be at least as large as 1.4 ~ = 9.45 a.u.. 
However, the polarizability value finally recommended by this author is 1.48 + 
0.08/~3 (ca. 10 a.u.) [109, 110], being still lower than the best CHF values (ca. 
10.6 a.u.). Moreover, the present calculations clearly show that the correlation 
contribution to the fluoride ion polarizability must be large and positive, leading 
to a much larger final value of a. The third-order MBPT results confirm our 
previous conclusions [33] with regard to the estimate of the free fluoride ion 
polarizability. 

The discrepancy between the best available empirical estimates [109,110], and 
the correlation-corrected theoretical values has been discussed previously and 
interpreted in terms of the medium effects. It appears that the extrapolation 
procedures employed to obtain the free ion polarizabilities from the solution 
data can only lead to what has been termed the apparent free ion polarizability 
[33]. In other words, the empirical values which follow from the crystal or 
solution data must always account for some portion of the medium effect. This 
effect can be rationalized theoretically either in terms of the orbital contraction 
effects [117,118] or by allowing for some transfer of ,tl~e electronic charge 
between the negative ion and its environment [33]. Both these effects are 
known to reduce the effective values of polarizabilities of negative ions 
[113, 115,117, 119]. 

It follows that in the case of negative ions the theoretical calculations includ- 
ing correlation effects represent currently the only reliable source of the free 
ion polarizabilities. It is worth while mentioning that a similar discrepancy 
between the empirical estimates and the theoretical data exists also for the 
chloride ion [33,109, 110, 120]. Recent perturbation calculations [121] per- 
formed by using the third-order finite-field MBPT method and extended 
GTO/CGTO bases indicate that the correlation contribution to the CHF 
polarizability of the chloride ion is also large and positive. Hence, the empirical 
values of the free ion polarizabilities for negative ions need a careful reconsider- 
ation. 

The present MBPT calculations are not conclusive with regard to the final 
accurate value of the fluoride ion polarizability. However, they are certainly 
accurate enough for the present discussion. They evidently indicate that the 
empirical values of the free ion polarizability commonly accepted for F- are 
much too low [33,109, 110, 114-116]. Obviously, to obtain accurate theoretical 
value of the fluoride ion polarizability it is necessary to include the higher-order 
correlation effects. They are, as shown by the data of Tables 3-5, by no means 
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negligible. The finite-field diagrammatic MBPT approach is certainly very useful 
and promising in this respect especially when used in conjunction with scaling 
and Pad6 approximant techniques and the use of the EFV GTO bases helps to 
overcome the problems arising from the restricted basis set approximation. 
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